Protein synthesis is required for the enhancement of long-term potentiation and long-term memory by spaced training.
نویسندگان
چکیده
Spaced training is generally more effective than massed training for learning and memory, but the molecular mechanisms underlying this trial spacing effect remain poorly characterized. One potential molecular basis for the trial spacing effect is the differential modulation, by distinct temporal patterns of neuronal activity, of protein synthesis-dependent processes that contribute to the expression of specific forms of synaptic plasticity in the mammalian brain. Long-term potentiation (LTP) is a type of synaptic modification that may be important for certain forms of memory storage in the mammalian brain. To explore the role of protein synthesis in the trial spacing effect, we assessed the protein synthesis dependence of hippocampal LTP induced by 100-Hz tetraburst stimulation delivered to mouse hippocampal slices in either a temporally massed (20-s interburst interval) or spaced (5-min interburst interval) fashion. To extend our studies to the behavioral level, we trained mice in fear conditioning using either a massed or spaced training protocol and examined the sensitivity of long-term memory to protein synthesis inhibition. Larger LTP was induced by spaced stimulation in hippocampal slices. This improvement of synaptic potentiation following temporally spaced synaptic stimulation in slices was attenuated by bath application of an inhibitor of protein synthesis. Further, the maintenance of LTP induced by spaced synaptic stimulation was more sensitive to disruption by anisomycin than the maintenance of LTP elicited following massed stimulation. Temporally spaced behavioral training improved long-term memory for contextual but not for cued fear conditioning, and this enhancement of memory for contextual fear was also protein synthesis dependent. Our data reveal that altering the temporal spacing of synaptic stimulation and behavioral training improved hippocampal LTP and enhanced contextual long-term memory. From a broad perspective, these results suggest that the recruitment of protein synthesis-dependent processes important for long-term memory and for long-lasting forms of LTP can be modulated by the temporal profiles of behavioral training and synaptic stimulation.
منابع مشابه
P3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory
Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...
متن کاملP19: Long-Term Potentiation
The term synaptic plasticity points to a series of persistent changes related to the activity of synapses. Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulations. Differe...
متن کاملP26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory
Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...
متن کاملP20: The Role of Protein Kinases in Memory
When an experience is encrypted into a long-lasting memory, it is believed that specific sets of neurons in the brain of the animal undergo changes including the strengthening of preexisting synapses and the growth and maintenance of new synaptic connections. These activity-dependent synaptic changes appear to require the coordination of a variety of cellular processes in spatially separated ce...
متن کاملThe effects of CCK-8S on spatial memory and long-term potentiation at CA1 during induction of stress in rats
Objective(s): Cholecystokinin (CCK) has been proposed as a mediator in stress. However, it is still not fully documented what are its effects. We aimed to evaluate the effects of systemic administration of CCK exactly before induction of stress on spatial memory and synaptic plasticity at CA1 in rats. Materials and Methods: Male Wistar rats were divided into 4 groups: the control, the control-C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 87 6 شماره
صفحات -
تاریخ انتشار 2002